Основные свойства капельных жидкостей

Одной из основных механических характеристик жидкости является ее плотность.

Плотностью (кг/м3) называют массу жидкости, заключенную в единице объема; для однородной жидкости

Удельным весом (Н/м3) называют вес единицы объема жидкости, т. е,.

Коротко рассмотрим основные физические свойства капельных жидкостей.

А) Сжимаемость, или свойство жидкости изменять свой объем под действием давления, характеризуется коэффициентом объемного сжатия, который представляет собой относительное изменение объема, приходящееся на единицу давления, т. е.

В большинстве случаев капельные жидкости можно считать практически несжимаемыми, т. е. принимать их плотность не зависящей от давления. Но при очень высоких давлениях и упругих колебаниях сжимаемость жидкостей следует учитывать.

Различают адиабатный и изотермический модуль упругости. Первый больше второго приблизительно в 1,5 раза и проявляется при быстротечных процессах сжатия жидкости без теплообмена.

Б).Температурное расширение характеризуется коэффициентом объемного расширения, который представляет собой относительное изменение объема при изменении температуры  на 1 °С и постоянном давлении.

В).Сопротивление растяжению внутри капельных жидкостей по молекулярной' теории может быть весьма значительным. При опытах с тщательно очищенной и Дегазированной водой В ней были получены кратковременные напряжения растяжения до 23 — 28 МПа. Однако технически чистые жидкости, содержащие взвешенные твердые частицы и мельчайшие пузырьки газов, не выдерживают даже незначительных напряжений растяжения. Поэтому в дальнейшем будем считать, что напряжения растяжения в капельных жидкостях невозможны.

Г). На поверхности раздела жидкости и газа действуют силы поверхностного натяжения, стремящиеся придать объему жидкости сферическую форму и вызывающие некоторое дополнительное давление. Однако это давление заметно сказывается лишь при малых объемах жидкости и для сферических объемов (капель).

В трубках малого диаметра дополнительное давление, обусловленное поверхностным натяжением, вызывает подъем (или опускание) жидкости относительно нормального уровня, характеризующийкапиллярность жидкости.

С явлением капиллярности приходится сталкиваться при использовании стеклянных трубок в приборах для измерения давления, а также в некоторых случаях истечения жидкости. Большое значение приобретают силы поверхностного натяжения в жидкости, находящейся в условиях невесомости.

Д). Вязкость представляет собой свойство жидкости сопротивляться сдвигу (скольжению) ее слоев. Это свойство проявляется в том, что в жидкости при определенных условиях возникают касательные напряжения. Вязкость есть свойство, противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и др.) являются менее текучими, и наоборот.

При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью. Скорость уменьшается по мере уменьшения расстояния у от стенки вплоть доv= 0 при у = 0, а между сдоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений (напряжений трения),

Согласно гипотезе, высказанной впервые Ньютоном в 1686 г., а затем экспериментально обоснованной проф. Н. П. Петровым в 1883 г., касательное напряжение в жидкости зависит от ее рода и характера течения и при слоистом течении изменяется прямо пропорционально так называемому поперечному градиенту скорости.

Поперечный градиент скорости dv/dy определяет изменение скорости, приходящееся на единицу длины в направлении нормали к стенке и, следовательно, характеризует интенсивность сдвига жидкости в данной точке (точнееdv/dy  это модуль градиента скорости; сам градиент — вектор).

Из закона трения, следует, что напряжения трения возможны только в движущейся жидкости, т. е. вязкость жидкости проявляется лишь при ее течении. В покоящейся жидкости касательные напряжения будем считать равными нулю .

Изложенное позволяет сделать вывод, что трение в жидкостях, обусловленное вязкостью, подчинено закону, принципиально отличному от закона трения твердых тел.

При постоянстве касательного напряжения по поверхности S полная касательная сила (сила трения), действующая по этой поверхности

Наряду с динамической вязкостью μ применяют кинематическую:

Единицей измерения кинематической вязкости является стокc:1 Ст = 1 см2/с. Сотая доля стокса называется сантистоксом (сСт).

Вязкость капельных жидкостей зависит от температуры и уменьшается с увеличением последней. Вязкость газов, наоборот, с увеличением температуры возрастает. Объясняется это различием природы вязкости в жидкостях и газах. В жидкостях молекулы расположены гораздо ближе друг к другу, чем в газах, и вязкость вызывается силами молекулярного сцепления. Эти силы с увеличением температуры уменьшаются, поэтому вязкость падает, В газах же вязкость обусловлена, главным образом, беспорядочным тепловым движением молекул, интенсивность которого увеличивается с повышением температуры. Поэтому вязкость газов с увеличением температуры возрастает.

Вязкость жидкостей зависит также от давления, однако эта зависимость существенно проявляется лишь при относительно больших изменениях давления (в несколько десятков МПа). С увеличением давления вязкость большинства жидкостей растает,

Вязкость жидкостей измеряют при помощи, вискозиметров. Наиболее распространенным является вискозиметр Энглера, который представляет собой цилиндрический сосуд диаметром 106 мм, с короткой трубкой диаметром 2,8 мм, встроенной в дно. Время t истечения 200 см3испытуемой жидкости из вискозиметра через эту трубку под действием силы тяжести, деленное на времяtводистечения того же объема дистиллированной воды при 20° С выражает вязкость в градусах Энглера: 1 °Е =t/tвод, где tвод= 51,6 с.

Для пересчета градусов Энглера в стоксы в случае минеральных масел применяют формулу

Ж).Испаряемостьсвойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий, в которых они находятся.

Одним из показателей, характеризующих испаряемость жидкости, является температура ее кипения при нормальном атмосферном давлении; чем выше температура кипения, тем меньше испаряемость жидкости. В гидросистемах нормальное атмосферное давление является лишь частным случаем; обычно приходится иметь дело с испарением, а иногда и кипением жидкостей в замкнутых объемах при различных температурах и давлениях. Поэтому более полной характеристикой испаряемости является давление (упругость) насыщенных паров рн п, выраженное в функции температуры. Чем больше давление насыщенных паров при данной температуре, тем больше испаряемость жидкости. С увеличением температуры давлениерн.п увеличивается, однако у разных жидкостей в разной степени.

Если для простой жидкости рассматриваемая зависимость является вполне определенной, то для сложных жидкостей, представляющих собой многокомпонентные смеси (например, для бензина и др.), давление />н.п зависит не только от физико-химических свойств и температуры, но и от соотношения объемов жидкой и паровой фаз, Давление насыщенных паров возрастает с увеличением части объема, занятого жидкой фазой. Обычно значения упругости паров сложных жидкостей даются для отношения паровой и жидкой фаз, равного 4:1.

З).Растворимость газов в жидкостях характеризуется количеством растворенного газа в единице объема жидкости, различна для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, т. е.

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказываться на работе гидросистем.